TETRA-TERT-BUTYLTETRAHEDRANE HAS T SYMMETRY[‡]

W. Douglas Hounshell and Kurt Mislow

Department of Chemistry, Princeton University Princeton, New Jersey 08540

<u>Summary</u>. Calculations using a variety of force fields indicate that tetra-tert butyltetrahedrane has ground state T symmetry and is therefore chiral.

We recently showed that molecules of the type $t-Bu_4M$ (M = group IVA element) exhibit <u>T</u> symmetry in the ground state ¹ In connection with these studies, our interest was aroused by the recently reported synthesis of tetratert-butyltetrahedrane (TTT).² If the four-carbon framework of tetrahedrane were to be considered a super-atom of type M, one might then expect that TTT would also exhibit ground state <u>T</u> symmetry Indeed, empirical force field (EFF) calculations support this expectation.

The results of calculations on TTT using four force fields³ are presented in Table I. In these calculations,⁴ the tetrahedrane frame was assumed to have local \underline{T}_d symmetry, all six C-C bond lengths were held fixed at 1.482 $\overset{O}{A^5}$ and all four C-C_q bonds⁶ were fixed along the \underline{C}_3 axes⁷ While the assumption of skeletal \underline{T}_d symmetry does not affect structures with \underline{T}_d and \underline{T} symmetry, it does constitute a constraint on structures with any other symmetry (e g., \underline{S}_A , see below)

In all cases the ground state is predicted to have <u>T</u> symmetry, with all four tert-butyl groups twisted by ca 14° and all twelve methyl groups by ca $2-6^{\circ}$, all in the same direction from a staggered <u>T</u> conformation. That is,

[‡]Dedicated to Professor A Dreiding on the occasion of his 60th birthday

Table I. Calculated Structures of Tetra-tert-butyltetrahedrane (TTT)

 $H_{3}C_{m} - C_{m}H_{3} - C_{$

Force Field ^a	Symmetry	Rel. Energy (kcal/mol)	r(C-C _q) (A)	$\Theta(C_m - C_q - C_m)$ (deg)	ø(C-C-C _q -C _m) (deg)
Allinger 1971	T	0	1.555	111 1	46.4
	SA	3.62	1.560	110.5	47.9
	$\frac{T_{d}}{T_{d}}$ b	(5 32)	1.562	109.8	60 ^b
Allinger 1971	T	0	1.519	110.7	458
(no stretch-bend)	S_	3.87	1.524	110.1	47.6
	$\frac{T}{T}d^{b}$	(5.95)	1 526	109 3	60 ^b
EAS	<u>T</u>	0	1.532	109.5	46 1
	$\frac{T}{d}^{b}$	(5.02)	1 539	108.6	60 ^b
Allinger 1977	<u>T</u>	0	1.487	109 7	45.4
	$\frac{T_d}{d}^{b}$	(4.03)	1.495	108.7	60 ^b
MUB - 2	<u>T</u>	0	1 452	109 1	47_6
	\underline{T}_{d}^{b}	(1 71)	1.454	108 8	60 ^b

^aSee reference 3.

^bFour dihedral angles ($\phi(C-C-C_q-C_m)$) were frozen at 60[°] This constraint enforces approximate \underline{T}_d symmetry. This conformation does not correspond to a local energy minimum. No. 14

TTT is chiral ⁸ However, enantiomerization is expected to be facile since the structure with \underline{T}_d symmetry, a possible achiral transition state, lies only ca 2-5 kcal/mol above the ground state Another possible enantiomerization pathway proceeds through a form with \underline{S}_4 symmetry As in the other t-Bu₄M compounds, ¹ a local minimum with \underline{S}_4 symmetry was found using the Allinger 1971 force field ⁹

In our previous study¹ it had been found that, using the Allinger 1971 force field, plots of Θ ($C_m - C_q - C_m$) and of ΔE (the difference in energy between the \underline{S}_4 and \underline{T} forms) vs. r^o (the "preferred" M-C_q bond length¹) were linear over the range of values studied. If one includes TTT in this plot by considering the C₄ skeleton to be a super-atom with r^o = 2.42 Å,¹⁰ the points for TTT (ΔE = 3.62 kcal/mol, Θ = 111.1^o, see Table I) lie very close to the same lines.¹¹

We add a note of caution. The lack of parameters for the tetrahedrane frame precludes full relaxation. Since our assumption of \underline{T}_d frame symmetry constitutes a constraint on the \underline{S}_4 (but not on the <u>T</u>) conformation, $\Delta E(\underline{S}_4 - \underline{T})$ is somewhat overestimated. In addition, due to the large C-C-C_q bond angles, ⁷ the C-C_q bond distance is somewhat suspect ¹² Nevertheless, as in the other t-Bu₄M compounds, ¹ the main conformational features are governed by nonbonded interactions between the tert-butyl groups, and the conclusion that TTT is chiral is therefore tenable. ¹⁴

<u>Acknowledgment</u>. We thank the National Science Foundation (CHE77-07665) for support of this work, and Linda D. Iroff for helpful discussion

References and Notes

1 1. D. 11011 and K HISIOW, D. Rm Chem. 500., 100, 2121 (1976	1	L.	D.	Iroff	and	K	Mislow,	J.	Am	Chem.	Soc.,	100,	2121	(1978)
---	---	----	----	-------	-----	---	---------	----	----	-------	-------	------	------	-------	---

- 2 G Maier, S Pfriem, U Schäfer, and R Matusch, <u>Angew Chem. Internat</u>. <u>Ed</u>, <u>17</u>, 520 (1978). We thank Professor Maier for sending us a preprint of his paper prior to publication.
- 3 (a) Allinger 1971 N L Allinger, M. T. Tribble, M A. Miller, and D H Wertz, J. Am. Chem. Soc, 93, 1637 (1971), (b) EAS E M Engler, J D Andose, and P v.R Schleyer, <u>ibid</u>, 95, 8005 (1973), (c) Allinger 1977 N L Allinger, <u>ibid</u>, 99, 8127 (1977), (d) MUB-2 S Fitzwater and L S. Bartell, <u>ibid</u>, 98, 5107 (1976), see also footnote 4 in L S Bartell, <u>ibid</u>, 99, 3279 (1977).
- 4. The program used (BIGSTRN) is available from QCPE, Department of

Chemistry, Indiana University, Bloomington, Indiana 47401 (J D. Andose, et al., <u>QCPE</u>, <u>10</u>, 348 (1978)). All structures were relaxed using a modified version of the pattern search technique, with an energy criterion of 0.005 kcal/mol over one iteration Torsional angles were held fixed at a given value by imposing a large quadratic potential.

- This is the bond length calculated for tetrahedrane by <u>ab initio</u> methods J. M. Schulman and T J. Venanzi, <u>J. Am. Chem. Soc.</u>, <u>96</u>, 4739 (1974).
- 6. For definitions of C, C_q , and C_m , see the picture at the top of Table I
- 7. This second assumption is necessary since the large C-C-C bond angle (ca 144.7°) is well outside the parametrization of any force field.
- Concerning the chirality of the parent compound, tetrahedrane, the reader's attention is directed to the remarkable report by our esteemed colleague, Professor A. Troischose, Zurich (<u>Nachr_Chem_Techn</u>., <u>18</u>, 127 (1970)).
- 9. An \underline{S}_4 minimum was not located using the other force fields
- 10. That is, the distance from the center of the tetrahedrane to C (0 91 Å) plus the "preferred" C-C₀ bond length (1 512 Å).
- 11. See Figure 2 in reference 1
- 12. Using MUB-2, diminished 1-3 (Urey-Bradley) nonbonded interactions lead to an unusually short C-C_q bond (1.452 Å). On the other hand, the stretchbend term in the Allinger 1971 force field leads to lengthened bonds (1.555 Å) However, such a term is unrealistic. In fact, an opening of the C-C-C_q angle should lead to increased s character in the orbital on C which is used to form the C-C_q bond. Therefore this bond should be shorter than "normal". This effect, which has been discussed previously,¹³ is not accounted for in this force field. Omitting this term for the C-C-C_q angles does indeed lead to a much shortened bond (see Table I)
- M.H.P. Ardebili, D. A. Dougherty, K Mislow, L. H Schwartz, and J. G White, J. Am. <u>Chem.</u> Soc., 100, 7994 (1978)
- 14. Twisting of tert-butyl groups in substituted cyclohexanes has previously been noted, cf., e g., C. Altona and M. Sundaralingam, <u>Tetrahedron</u>, <u>26</u>, 925 (1970), D. H. Faber and C Altona, <u>J Chem Soc</u>, <u>Chem Comm</u>, 1210 (1971), H. van Koningsveld, <u>Acta Crystallogr.</u>, <u>B28</u>, 1189 (1972), B. van de Graaf and B. M. Wepster, <u>Tetrahedron Lett.</u>, 2943 (1975)

(Received in USA 10 January 1979)